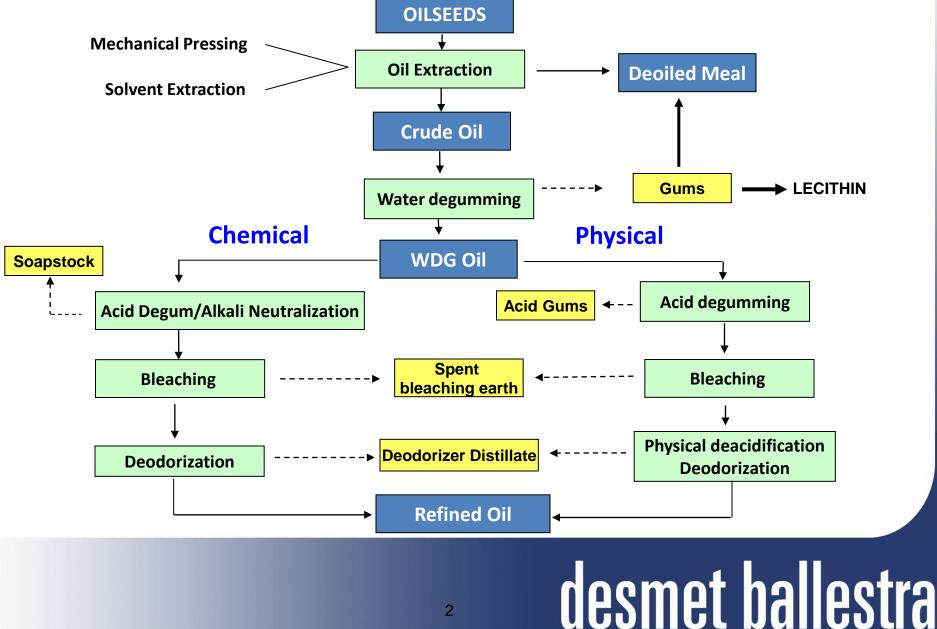


Texas A&M Short Course


Vegetable Oil Processing and Products of Vegetable Oils September 29-October 3, 2013

Nano Neutralization[™] – Step Change in Edible Oil Processing through Chemical Economy and Yield Improvement

W. Blake Hendrix – President/CEO Desmet Ballestra North America bh@desmetballestra.com

Physical vs Chemical Refining

Chemical Refining

Still most widely applied refining process

- * Independent of crude oil quality ('forgiving' process);
- * Usually gives good refined oil quality ('effect of caustic');
- * Most suitable process for stand-alone refineries;

But, with its known drawbacks

- * High neutral oil losses in the soapstock (especially for higher FFA oils) ;
- * Low value of the soapstock or acid oil;
- * Difficult and expensive wastewater treatment (environmental issue) ;

Clear demand for improved chemical refining

Developments in Chemical Refining

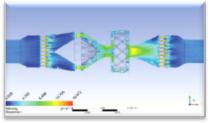
Better value-enhancement of soapstock

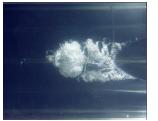
- * Dry chemical refining with CaO (formation of Ca-soaps);
- * Chemical refining with KOH (formation of K-soaps);
- * Not applied on industrial scale (not consistent, too high operating cost,..)

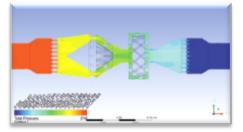
Mechanical improvements

- * Centrifugation : from tubular bowl to continuous selfcleaning machines ;
- * Use of better, more powerful mixing systems (less excess chemicals)

Process improvements


- * Replacing water washing by dry 'silica' post-treatment (less waste water);
- * Nano-reactor technology (only recently industrially applied)





- Hydrodynamic cavitation principle
- Effects are generated by pumping two liquids (e.g. oil + water) from which at least one is low boiling - at high pressure through a specific designed device (nano-reactor)
- Formation of small 'nano' bubbles ('cavities') with release of large magnitudes of energy over a small area (high energy density)

Typical velocity and pressure profile in a Nano Reactor

- Much more energy efficient than the acoustic cavitation process
- Suitable for larger scale, continuous processes

Hydrodynamic cavitation

New technology with big potential in various applications

- Process intensification (faster-higher yield-more efficient)
- Cell disruption (biotechnology)
- Microbial disinfection/destruction contaminants
- Other specific applications

■ Use of Nano Reactors[™] in Oil Processing

Ref : Gogate – Chemical Engineering and Processing 47 (2008),515-527

Nano Reactors[®]

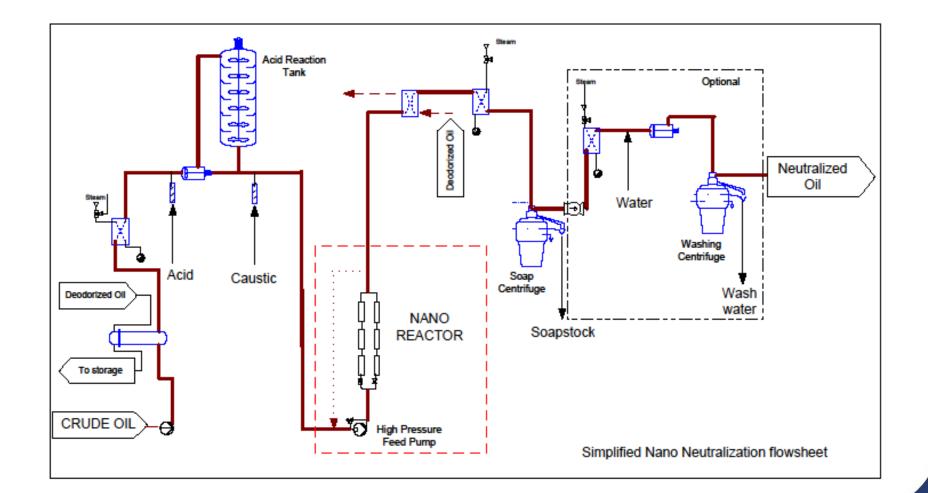
- Nano-reactor design
 - ✓ Unique (patented) internal geometry
 - ✓ Originally developed as biodiesel reactor
 - ✓ Optimized design for use in oil processing
- What's happening inside the reactor?
 - ✓ High turbulence
 - ✓ Very high shear forces ↓
 - ✓ Very high shear forces
 ✓ Disruption of molecular agglomerates (e.g. : phospholipid micelles)
 - ✓ Faster and more efficient reactions (e.g. FFA neutralization)

A true reactor, not just a better mixer

Proprietary design of CTi

Nano Neutralization™

- ✓ Patent pending process;
- ✓ For new or existing chemical refining lines (add-on technology)
- ✓ 'next generation' chemical refining (more efficient/sustainable)
- ✓ Industrially proven on soybean oil
 - 400 TPD plant running > 1.5 year
 - Demonstrated process benefits (less chemicals, higher oil yield)
 - No mechanical issues (no internal fouling, easy operation)
- \checkmark Also applicable for chemical refining of all other soft oils
 - Successful pilot trials on rapeseed, sunflower, and corn oil
 - More industrial plants will start-up in near future (US, South America, Europe and India)

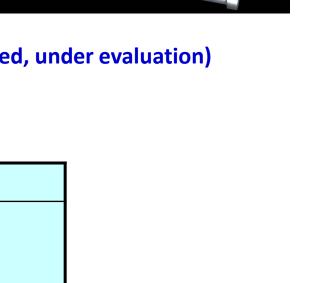


Typical process conditions

Temperature :	45 to 75°C (115 to 170°F) Also cold processing (10°C) gives good result
Pressure :	55-75 bar (800-1100 psi) No risk for emulsion formation (> 200 bar)
Maturation time :	5 - 15 min Longer maturation time not recommended
Energy consumption :	2.5 – 4 kw/ton Slightly higher than for Ultra High Shear Mixers (Silverson, IKA,)

Nano Neutralization™

desmet ballestra



Available industrial reactors

- Lowest Reactor size : 10 gpm¹ = 50 TPD
- Medium Reactor size : 40 gpm = 200 TPD
- Highest Reactor size : 100 gpm = 500 TPD (developed, under evaluation)
- * Multiple parallel reactors for unlimited capacity ranges
- *Possible plant configurations, examples:*

CAPACITY (TPD)	REACTOR CONFIGURATION
200	1 x 40 gpm reactor
400	2 x 40 gpm reactor
600	3 x 40 gpm reactor
800	2 x 400 TPD setup

¹gpm : gallons per minute

Nano Neutralization[™] Reactors

Complete skid mounted unit (400 TPD)

2 * 40 gpm reactor (400 TPD)

Nano Neutralization

400 TPD Nano Neutralization [™] of soybean oil - Industrial data – 1

Feedstock	Water-degummed soybean oil (120-170 ppm P; 0.45-0.55% FFA)		
	Nano Neutralization™	Classical caustic refining	
Process parameters - Phosphoric acid (ppm) - NaOH (% 16.6 °Be)	0-100 0.7	850-900 1.2	
- Pressure (bar) - Temperature (°C) ¹	65 50	low 70 to 80	
Refined Oil Quality			
– P-content (ppm)	1-3	6-8	
- Ca & Mg (ppm)	< 1	< 3	
– FFA (%)	< 0.03	< 0.05	
- Soaps (ppm)	< 100	200-300	

¹ Temp. range : 50°C; oil heated to 80°C prior to centrifugation

Nano Neutralization™

600 TPD Nano Neutralization[™] of soybean oil - Industrial data - 2

Feedstock	Water-degummed soybean oil (170 ppm P; 0.20% FFA)		
	Nano Neutralization™	Classical caustic refining	
Process parameters - Phosphoric acid (ppm) - NaOH (% dry basis)	26 0.02	750 0.13	
- Pressure (bar) - Temperature (°C) ¹	65 <50	low 70 to 80	
Refined Oil Quality - P-content (ppm) - Ca & Mg (ppm) - FFA (%) - Soaps (ppm)	6 NA < 0.02 < 50	12 NA < 0.02 <50	

¹ Temp. range : <50°C; oil heated to 80°C prior to centrifugation

Nano Neutralization™: Proven advantages

- 0.2-0.4 % oil yield increase
- 90% less excess phosphoric acid
- 30-50% less caustic soda
- Lower soaps at primary separation
- Low to zero silica consumption

Nano Neutralization[™] Explaining the benefits

BENEFITS	PROVEN SAVING	EXPLANATION
Less acid (phosphoric or citric)	90% less excess	Nano reactor destroys typical PL micelle structure As a result, non-hydratable PL become more hydratable with nearly no acid
Less caustic soda	Min. 30% less	Less caustic required for neutralisation of phosphoric acid; Less excess caustic for FFA neutralisation due to better mixing effect
No water wash Less silica Lower soaps in oil	Min. 50% less silica	Better phase separation because of less salts/soaps (less acid and caustic) gives lower soap content in once-refined oil (after first centrifuge)
Increased oil yield	0.2-0.4% yield increase	Less excess caustic gives less oil saponification and less neutral oil entrainment in soapstock Refining losses : (FFA+PL+MIV)* 1.35

Benefits are scientifically explained

Nano Neutralized *vs* conventional refined soybean oil

Comparison of industrial refined soybean oil samples

	Soybean Oil (US Standard)	
Quality Parameters	Industrial Nano-refined	Conventional Chemical refined
FFA (% C18:1)	0.02	0.02
P (ppm)	<1	<1
Fe (ppm)	<0.05	<0.05
Trans FA (%)	0.53	0.57
Color (R – 5 ^{1/4} ")	1.2	1.2
Tocopherols (ppm)	815	792
OSI (hr at 97.8°C)	15.5	15.7

Nano-neutralization[™] improves refined oil quality

Pilot test unit

Containerized pilot unit for optimization trials in our R&D center

10 GPM reactors (smallest available)

- ✓ Industrial Scale Proven
 - Nano Neutralization™
 - Nano Degumming

Under evaluation

- Cold Nano Neutralization ™ (SFO)
- Nano washing (CPO)
- Enzyme assisted Nano Degumming (SBO, RSO, Canola)
- Nano Transesterification (biodiesel)

Summary & Conclusions

 ✓ Nano-reactor[™] is a new disruptive revolutionary technology in edible oil processing

 ✓ Successfully introduced in refining (nano-neutralization[™] and nano degumming)

 Truly 'next' generation process that meets all demands of oil processors

- More efficient (higher yield, lower operating cost)
- Improve oil quality (cold stability, color)
- More sustainable (less chemicals, no water washing, less adsorbents)

More info on www.desmetballestra.com